Synthesis and characterization study of dual phase mixed zinc cobalt ferrite nanoparticles prepared via chemical co-precipitation method

نویسندگان

چکیده

Nanoparticles of Zinc substituted Cobalt ferrite powders having general formula ZnxCo1-xFe2O4 (x = 0, 0.25, 0.5, 0.75, 1.0) have been produced by using analytical grade nitrates and hexadecyltrimethylammonium bromide (CTAB) as structure directing reagent via Chemical co-precipitation method. The morphology prepared polycrystalline nanoparticles were investigated X-ray diffraction (XRD), Fourier Transform Infrared Radiation (FTIR) Scanning electron microscopy (SEM) respectively. Thermogravimetric differential analysis (TG/DTA) technique gives information about phase formation occurs beyond 450 ºC. XRD confirms the establishment cubic spinel with presence minor secondary α-Fe2O3 (hematite) at a calcination temperature 650 mixed zinc cobalt showed dual crystallite size lies in range 6-11 nm. FE-SEM microstructure shows nearly spherical particle between 0.11-0.20 µm. FT-IR spectra display two significant strong absorption bands nearby 400 cm-1 600 on tetrahedral octahedral sites Copyright © 2018 VBRI Press.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and magnetic investigation of cobalt ferrite nanoparticles prepared via a simple chemical precipitation method

In this research cobalt ferrite (CoFe2O4) nano-crystalline powders were prepared by simple chemical precipitation method using cobalt sulfate. The CoFe2O4 nanoparticles were characterized by X-ray diffraction, scanning electron microscopy  and Fourier transform infra-red spectroscopy. The crystallite size of CoFe2O4 nanoparticles was calculated by Debye–Scherrer formula. The effect of precursor...

متن کامل

Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

In this research zinc sulfide (ZnS) nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The ...

متن کامل

Preparation and Characterization of Manganese Ferrite Nanoparticles via Co-precipitation Method for Hyperthermia

       In this work, Mn ferrite nanopowders were prepared by co-precipitation method and were characterized. Phase identification of the nanopowders was performed by X-ray diffraction method and the mean particle size of the nanopowders was calculated by Scherrer's formula, using necessary corrections. Magnetic parameters of the prepared nanopowders were measured by a vibrating sample magnetome...

متن کامل

Synthesis and characterization of SnO2 nanoparticles by Co-Precipitation method

Tin oxide (SnO2)nanoparticles were synthesized by co-precipitation method and the synthesized nanoparticles were annealed at different temperatures for characterization. The powders were investigated with X-ray diffraction, scanning electron microscopy and optical spectroscopy. The structural characterization was carried out by X-ray diffraction which confirms the crystalline nature ...

متن کامل

Chemical Synthesis and Characterization of Perovskite NdfeO3 Nanocrystals via a Co-Precipitation Method

A facile co-precipitation method for the synthesis of well-dispersed NdFeO3 nanocrystals is developed in the presence of octanoic acid as surfactant. Co-precipitation can produce fine, high-purity, stoichiometric particles of single and multicomponent metal oxides. The product is characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microsc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced materials proceedings

سال: 2021

ISSN: ['2002-441X', '2002-4428']

DOI: https://doi.org/10.5185/amp2018/6997